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Summary Resistance to apoptosis is closely linked to tumorigenesis, as it enables malignant
cells to expand even in a stressful environment. Cells resistant to apoptosis are also assumed
to be resistant to anti-cancer therapies. Apoptosis has therefore taken a central position in cell
death research. However, its contribution to treatment success is highly debated for solid
tumors. It becomes more and more clear that cells can also die by non-apoptotic mechanisms,
such as autophagy, mitotic catastrophe and necrosis. In this review, we summarize the current
knowledge regarding the molecular pathways that underlie these apoptotic and non-apoptotic
death pathways, and discuss the clinical data that have now accumulated to evaluate their
roles in tumor development and cancer treatment.

�c 2008 Elsevier Ltd. All rights reserved.
Introduction

The process by which a normal cell develops into a malig-
nant cell with the capacity to form a tumor requires several
cellular alterations. Evasion of apoptotic cell death is one of
the proposed alterations.1 Importantly, evasion of apoptosis
is also recognized to result in resistance to anti-cancer ther-
apies.2 Much research has therefore focused on finding ways
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to circumvent this resistance to apoptosis in order to im-
prove the treatment of cancer patients. However, the con-
tribution of apoptosis resistance to treatment success
remains a matter of debate, especially in solid tumors.3

Increasing attention is being directed towards other types
of cell death, such as mitotic catastrophe, autophagy and
necrosis. These alternative types of cell death may compen-
sate for the resistance to apoptosis. Understanding the reg-
ulation of apoptosis and non-apoptotic death pathways will
help us to better evaluate their impact on tumor develop-
ment and treatment response in vivo. Moreover, detailed
knowledge regarding the molecular events that contribute
to treatment success will facilitate a more rational ap-
proach of anti-cancer treatments.
.
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Cell death pathways and tumorigenesis

Apoptosis pathway

The term Apoptosis (Greek: apo – from, ptosis – falling) is
based on the morphological characteristics of the dying
cells, which include cellular shrinkage, membrane blebbing
and eventually fragmentation into membrane bound apop-
totic bodies.4 During apoptosis, the cell membrane loses
its asymmetry, and phosphatidylserine (PS) becomes ex-
posed on the cell surface (illustrated in Fig. 1). This PS
exposure functions as ‘eat me’ signal for macrophages,
which can mediate the effective clearance of apoptotic
cell.5 This type of cell death is therefore suggested not to
trigger inflammation.

Apoptosis is a tightly regulated form of cell death, which
can be initiated by two different types of signals: intracellu-
lar stress signals and extracellular ligands (illustrated in
Fig. 2). Intracellular stress signals, such as growth factor
withdrawal, DNA damage, oxidative stress or oncogene acti-
vation, lead to permeabilization of the mitochondrial outer
membrane. The consequent release of cytochrome c and
other pro-apoptotic proteins propagates the apoptotic sig-
nal. Although it remains debated how cytochrome c is re-
leased from the mitochondria, the process is tightly
regulated by the Bcl-2 family of proteins, which consists of
pro- and anti-apoptotic proteins. The multidomain pro-
apoptotic Bax and Bak are essential, since mitochondria defi-
cient for Bax and Bak fail to release cytochrome c.6 Bax and
Bak are thought to induce permeabilization by forming pores
upon oligomerization.7 The pro-apoptotic BH3-only family
Figure. 1 Morphological characteristics of apoptosis and non-a
blebbing, cytoplasmic shrinkage, chromatin condensation, exposure
formation of apoptotic bodies. In experimental assays, apoptotic ce
exposed PS or by detecting caspase-cleaved proteins or fragment
membrane vesicles containing cytosolic organelles. The autophag
autophagy, since its cleavage, lipidation and recruitment to the aut
assays, and a punctate staining of the protein which can be visualiz
(GFP)-fused Atg8/LC3. Cells dying from mitotic catastrophe are u
characteristic of mitotic catastrophe is the formation of multiple m
involved. During necrosis, cells swell and loose their membrane int
members (such as Bid, Bim, Bad, Noxa and Puma) activate
Bax and/or Bak. Two models have been proposed for this
activation; several peptide studies suggest that they do so
through binding of anti-apoptotic Bcl-2 proteins (such as
Bcl-2, Bcl-xL, Bcl-w and Mcl-1), thereby relieving the inhibi-
tory function of these anti-apoptotic proteins. Others pro-
pose that a subset of BH3-only proteins can directly bind
and activate Bax and/or Bak.8–11 The consequent release
of cytochrome c leads to the formation of a complex – the
apoptosome – which contains cytochrome c, Apaf-1 and ini-
tiator caspase-9. Caspase-9 is auto-activated by induced
proximity in the apoptosome.12–14 Active caspase-9 cleaves
and thereby activates the executioner caspases.

When extracellular ligands such as Fas ligand, TNFa or
TRAIL (TNF-related apoptosis-inducing ligand) bind to their
receptors, the intracellular death domains of these recep-
tors recruit adaptor proteins (such as FADD and TRADD)
and initiator caspase-8 and -10. Together these comprise
the death-inducing signaling complex (DISC).15,16 Caspase-
8 and -10 are activated at the DISC, due to induced proxim-
ity of the caspases.13,17,18 This activation is controlled by
c-FLIP (cellular FLICE inhibitory proteins). Both the short
(c-FLIPS) and long (c-FLIPL) forms prevent caspase activa-
tion, although c-FLIPL is proposed to facilitate caspase bind-
ing and activation when lowly expressed.19–26 Once
caspase-8 is active, it propagates apoptosis via direct cleav-
age of executioner caspases. However, the extracellular
and intracellular apoptotic pathways cross at the level of
the mitochondria since caspase-8 can also cleave the pro-
tein Bid into its active form tBid. Being a pro-apoptotic
member of the Bcl-2 family of proteins, tBid induces
poptotic cell death. Apoptosis is characterized by membrane
of phosphatidylserine (PS) on the cell surface, and finally the
ll death is often determined by the binding of Annexin V to the
ed DNA. Death by autophagy is characterized by the double-
ic-vesicle-associated form of Atg8/LC3 is used as a marker of
ophagosomes results in an increased mobility with Western blot
ed by fluorescence microscopy using green-fluorescent protein
sually large and contain uncondensed chromosomes. The main
icronuclei, and also aberrant mitotic spindle formation can be
egrity.



Figure 2 Regulation of apoptosis. Triggering of death-receptors results in the assembly of the DISC, which results in activation of
executioner caspases (e.g. caspase 8) that in turn directly activate effector caspases (e.g. caspase-3). Release of cytochrome c is
mainly regulated by the Bcl-2 family of proteins, consisting of pro- and anti-apoptotic family members (illustration adopted from
Certo et al.10). Cytochrome c together with Apaf-1 activates the executioner caspase-9 that in turn activates effector caspases. The
released mitochondrial proteins Smac/DIABLO and HtrA2/Omi antagonize the inhibitors of apoptosis (IAPs). There is a cross-talk
between the two pathways as caspase-8 can activate Bid, which facilitates cytochrome c release.
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Bax/Bak-dependent permeabilization of the outer mito-
chondrial membrane and release of cytochrome c.27

Both apoptotic pathways lead to activation of the execu-
tioner caspases, caspase-3, -6 and -7, which are the main
proteases that degrade the cell. Their activity is, at least
to some extent, kept in check by IAPs (Inhibitor of Apoptosis
Proteins).28,29 IAPs themselves are inhibited by the proteins
SMAC/DIABLO30,31 and the serine protease HtrA2/Omi.32

These proteins are also released from the mitochondria,
possibly simultaneously with cytochrome c to alleviate the
inhibitory signal and to enhance the apoptotic signal.

Apoptosis in tumorigenesis

Apoptosis is recognized as a major barrier that must be
circumvented by tumor cells to allow them to survive and
proliferate in such stressful conditions.1 Tumors acquire
resistance to apoptosis through several strategies. Loss-of-
function mutations of the p53 tumor suppressor protein
are, for example, frequently observed. Since p53 can pro-
mote apoptosis by activating transcription of pro-apoptotic
Bcl-2 proteins in the context of DNA damage,33 nonfunc-
tional p53 can directly be linked to a failure to induce apop-
tosis after cellular stress. In addition, mice deficient for p53
are highly prone to develop tumors.34–36 Other anti-apopto-
tic modifications observed in human tumors involve the Bcl-
2 family of proteins, such as loss of functional pro-apoptotic
Bax and Bak37,38 or high expression of anti-apoptotic pro-
teins. In a subtype of B-cell lymphomas, Bcl-2 is highly ex-
pressed as a consequence of a Bcl-2 gene translocation
next to an immunoglobulin gene.39 In agreement with the
hypothesis that apoptosis resistance favors tumor forma-
tion, this translocation increases the incidence of spontane-
ous B-cell tumors in mice.40 Furthermore, modifications in
the death receptor pathways can also play a role in apopto-
sis resistance. For example, the Fas receptor expression is
high in normal colon mucosa but is reduced or even lost in
colon carcinomas.41 Absence of Fas allows tumor cells to
evade the immune destruction mediated by cytotoxic lym-
phocytes via this pathway. In addition, c-FLIP is specially
overexpressed in colon cancers, which has been shown to
protect tumor cells against cytotoxic T cell-induced apopto-
sis in vivo.42,43 To conclude, apoptosis resistance is the
common outcome of all the different anti-apoptotic modifi-
cations found in human tumors.2 It follows that resistance
to apoptosis plays an important role in tumorigenesis. Nev-
ertheless, several other cell death programs have been de-
scribed that may also regulate cellular degeneration.

Autophagy regulation

Autophagy is defined as a process in which proteins and
organelles are degraded by lysosomal proteases. The forma-
tion of autophagosomes – double-membrane vesicles
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containing cytosolic organelles – that fuse with lysosomes is
a major characteristic of autophagy (illustrated in Fig. 1). As
reviewed by Klionsky and Emr,44 autophagy is not only
important for degradation, but it also provides an alterna-
tive source of nutrients. In yeast, autophagy is induced un-
der nutrient-limiting conditions as a mechanism to survive.
However, autophagic structures are formed during morpho-
genesis in Drosophila melanogaster, suggesting a role in cell
death.45 It has therefore been considered that autophagy
might start as an adaptive response in order to enhance sur-
vival, but can result in cell death beyond a certain
threshold.

Genetic studies in yeast have identified more than
twenty genes involved in autophagy. Based on homology
with yeast, human autophagy-associated Atg proteins have
been identified. These proteins are involved in two conjuga-
tion systems which play a role in autophagosome formation:
Atg12 and Atg8/LC344 (illustrated in Fig. 3). Both in yeast
and in mammalian cells, Atg12 and Atg8/LC3 are activated
by Atg7 and conjugate to Atg5 or phosphatidylethanolamine
(PE), respectively.46,47 The two systems are related, since
the Atg12–Atg5 complex is required for Atg8/LC3 targeting
to the vesicle membranes.48,49 Studies in yeast show that
the kinase TOR lies upstream of all these autophagy-associ-
ated proteins. It thus follows that TOR plays an important
role in the initiation of autophagy.50 Such an important role
has also been shown for mammalian TOR (mTOR); inhibition
of mTOR enhances autophagy, while its activation sup-
presses autophagy.51,52 Another initial step in autophago-
Figure 3 Regulation of autophagy. Starvation triggers autophagy
growth factor (GF) conditions. Atg proteins are involved in autophag
III PI3K. This autophagosome formation involved two conjugation p
membrane, while Atg8/LC3 is conjugated to the PE that is inserted
order to degrade its content.
some formation is the activation of the class III
phosphatidylinositol 3-kinase, which depends on complex
formation with the Atg6/Beclin1 protein.53

Autophagy in tumorigenesis

The double-membrane bound vesicles that are typical for
autophagy can be observed in several types of human tu-
mors, and indicate that autophagy occurs in vivo.54 Autoph-
agy has been proposed to play a tumor suppressive role in
the early stages of tumorigenesis. For example, the inci-
dence of tumor formation of MCF7 cells is lower when Be-
clin1 is highly expressed, which is shown to promote
autophagy in these cells.55 More importantly, mice with im-
paired autophagy, such as Beclin1/- and Atg4C-/-, are more
prone to develop tumors.56,57 In several human tumors, Be-
clin1 and DRAM are found to be lowly expressed.55,58 Fur-
thermore, human tumors often display mutations in the
PI3-kinase pathway, leading to activation of mTOR and thus
suppression of autophagy.59,60 These anti-autophagic muta-
tions altogether suggest that cells need to circumvent
autophagy in order to form a tumor.

Autophagy may prevent a normal cell to become a malig-
nant cell by degrading damaged organelles and thereby re-
duce cellular stress, or by degrading specific proteins that
enhance tumor formation.61,62 Since monoallelic loss of Be-
clin1 is found to be associated with chromosome gains and
losses, autophagy may also limit chromosome instability
and thereby limit tumor progression.63 Alternatively,
by modifying mTOR signaling, which represses autophagy under
osome formation, which is positively regulated by Atg6 and class
athways. Atg12, -5 and -16 are physically associated with the
in the membrane. The autophagosome fuses with a lysosome in
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autophagy may kill the developing premalignant cells and
thereby prevent tumorigenesis.

Although anti-autophagic mutations are found in human
tumors, its definitive role in human tumorigenesis remains
unclear. The observation that the Beclin1 gene is just mono-
allelically lost55 suggests that a certain level of Beclin1
expression is required for tumor cell survival. Furthermore,
although some tumor types have a low Beclin1 expression,
colorectal and gastric tumors show a higher expression of Be-
clin1 compared with normal cells.64 Besides its potential tu-
mor suppressive role in the early stages of tumorigenesis,
autophagy has proposed to play a tumor-promoting role dur-
ing the later stages of tumor growth. In this case, autophagy
protects cells against stressful conditions. The hypothesis
that autophagy can function as survival mechanism has been
shown in growth factor-dependent cells from Bax/Bak-defi-
cient mice. These cells activate autophagy upon growth fac-
tor withdrawal, which enables them to survive for several
weeks. These cells die when autophagy is inhibited.65 Impor-
tantly, experimentswith establishedmyc-induced lymphoma
show that autophagy occurred in the surviving cells, whereas
the other cells died through apoptosis upon activation of p53
in these cells. Inhibition of autophagy in this setting enhances
tumor cell apoptosis and tumor regression. These in vivo
experiments suggest a cytoprotective role for autophagy
in established tumors.66 Nevertheless, measuring fully
functional autophagy needs to include degradation within
autophagolysosomes, which cannot be determined in human
tissues at this moment.67 Thus, despite some connections
between autophagy and tumorigenesis, the lack of good
markers that can detect autophagy in vivo limits investiga-
tions in human tumor tissues at present.

Mitotic catastrophe

Mitotic catastrophe is defined as a type of cell death that is
caused by aberrant mitosis. It is originally described in
yeast, where cells die as a result of aberrant chromosome
segregation.68 In mammalian cells and particularly in tumor
cells, mitotic catastrophe is mainly associated with
deficiencies in cell cycle checkpoints.69,70 To detect the
occurrence of mitotic catastrophe, both morphological
characteristics (such as enlarged and multinucleated cells)
and the presence of mitotic defects (such as incomplete
nuclear condensation, chromosome alignment defects,
unequal DNA separation or mitosis in the presence of DNA
damage) are used (illustrated in Fig. 1).69,71–74

Since the G2/M checkpoint is responsible for blocking
mitosis in the case of damaged DNA, altered expression of
proteins involved in this checkpoint is likely associated with
mitotic catastrophe. Several studies indeed show a role for
G2/M regulatory proteins. High expression levels of proteins
that promote entry of mitosis (such as Cdk1 and cyclinB) as
well as inhibition or knockout of proteins that prevent pre-
mature mitosis (such as ATR, ATM, Chk1, Chk2, Plk and 14-3-
3r) can induce mitotic catastrophe.75–79 Since p53 induces
a G2-arrest upon DNA damage via the Cdk-inhibitor p21,
both p53 and p21 might play a role in preventing mitotic
catastrophe as well.80

Next to defects in the G2/M checkpoint, defective mitotic
spindle checkpoints have been linked tomitotic catastrophe,
as such defects usually lead to missegregation of chromo-
somes. Adequate spindle functioning depends on proteins in-
volved in the spindle formation (such as Mad and Bub), and on
chromosomal passenger proteins (such as Survivin and Aurora
kinases).81–84 Conditional deletion of the Survivin gene in-
deed leads to disorganized mitotic spindles in early passage
cells, and these cells finally die with morphological charac-
teristics of mitotic catastrophe.85 Also drugs that affect the
mitotic spindle as well as specific downregulation of spindle
checkpoint proteins or inhibition of aurora B kinase activity
can result in aberrant mitosis.86,87

Mitotic catastrophe in tumorigenesis

Cells that survive abnormal mitosis can potentially divide
asymmetrically, leading to aneuploid cells which are in gen-
eral more tumorigenic. Also cells that go into mitosis with
damaged DNA are more likely to acquire tumorigenic capac-
ity as these cells are genetically unstable. Mitotic catastro-
phe might thus kill such cells and thereby prevent tumor
formation. An observation that might support a tumor sup-
pressive role for mitotic catastrophe comes from experi-
ments in a colon cancer xenograft model, in which a
dominant-negative mutant Survivin significantly induced mi-
totic catastrophe and apoptosis, and inhibited tumor
growth.88 High expression of Survivin is often found in tumor
cells while it is rarely detected in normal tissue.89

In theory, Survivin might prevent cells to undergo mitotic
catastrophe, and thereby promotes tumor development.
However, the question remains whether high Survivin in-
deed prevents mitotic catastrophe. Survivin expression is
also associated with tumor cell proliferation.90 Moreover,
this protein has been originally identified as a member of
the Inhibitor of Apoptosis Proteins (IAPs).91 Even though
structural studies have shown that a direct inhibitory effect
on caspases is unlikely,92 a role for Survivin as apoptosis
inhibitor cannot be excluded. In colorectal tumors, the
expression of Survivin indeed inversely correlates with the
level of apoptosis.90,93–95 It is therefore difficult to distin-
guish the effects of Survivin on promoting proliferation
and suppressing apoptosis from its effect on suppressing mi-
totic catastrophe.

In addition, some studies show that mitotic catastrophe
can be followed by apoptosis, and it is therefore still amatter
of debatewhethermitotic catastrophe is a specific death pro-
cess or just functions as a trigger for apoptosis.69,70

Necrosis

In contrast to apoptosis, necrosis has been considered as an
uncontrolled form of cell death. Morphologically, necrosis is
characterized by vacuolization of the cytoplasm, loss of
membrane integrity and cellular swelling, as illustrated in
Fig. 1. The resulting release of intracellular components into
the microenvironment can provoke an inflammatory re-
sponse. Although necrosis is usually a consequence of patho-
logical traumas such as infection or ischemia, it can be
induced by TNFa or Fas ligand via their respective death
receptors.96,97 The latter observation points to the fact that
necrosis may not be such an uncontrolled form of cell
death as initially suggested. Indeed, growing evidence sup-
ports the idea that necrosis can be regulated. Death recep-
tor-induced necrosis might depend on the kinase RIP1
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(receptor-interacting protein 1); cells with downregulated
RIP1 as well as RIP1-deficient Jurkat cells show partial resis-
tance to Fas-induced cell death.98 As reviewed by Festjens
et al.99 RIP1 likely targets the mitochondria resulting in ex-
cess formation of reactive oxygen species (ROS). ROS are con-
sidered to play a central role in necrosis, since the ROS
scavengers efficiently prevent necrosis induced by several
treatments.100–102

Besides death receptor/triggered necrosis, DNA damage
(e.g. MNNG-induced) can result in necrosis aswell. This necro-
tic death is mediated by PARP-1, a protein involved in DNA
damage repair. Overactivation of this enzyme results in a drop
of cellular NAD+ and ATP, hinting to a connection with the
mitochondria.103,104 In agreement with this hypothesis,
PARP-1 activation has been shown to induce AIF translocation
from the mitochondria to the nucleus, mediating a caspase-
independent death.105 PARP-1-mediated necrosis has been
shown to depend on the proteins RIP1, TRAF2 and
JNK1.106,107 These observations altogether indicate that
necrosis should no longer be exclusively viewed as an unregu-
latedprocess.A regulated formofnecrosis–alsocallednecro-
sis-like programmed cell death – might be considered as a
different type of cell death, besides accidental necrosis.108

Necrosis in tumorigenesis

Tumor cell necrosis can provoke an inflammatory response,
and stimulate an immune response towards potentially
malignant cells. In this case, necrosis might prevent tumor
development. Experiments with TNFa support this notion.
As reviewed by Aggarwal et al.,109 TNFa is originally isolated
as an anti-cancer cytokine, able to kill tumor cells and to in-
duce tumor regression in mice. On the other hand, mice
with impaired TNFa signaling, such as TNFa-/- and TNFR1-/-
mice, are less prone to develop tumors in inducible tumor
mouse models.110,111 It thus follows that TNFa can also pro-
mote tumorigenesis. It has been proposed that chronic
inflammation, in contrast to an acute inflammatory re-
sponse, can promote tumor development. In agreement
with the latter, patients with chronic inflammatory bowel
diseases (IBD) have an increased risk of cancer develop-
ment,112 and patients with the familial adenomatous polyp-
osis (FAP) syndrome show a significant reduction in the
number and size of colorectal adenomas upon treatment
with the anti-inflammatory drugs celecoxib.113,114 Since
necrosis can lead to inflammation and a sustained inflamma-
tory response can stimulate tumor development, these data
provide some indirect evidence for a role of necrosis in tu-
mor development. However, due to its unregulated nature,
it is almost impossible to experimentally prevent or induce
necrosis in vivo without affecting other types of death.
Whether necrosis plays a major role in tumorigenesis is
therefore still unclear.
The role of the cell death pathways in cancer
patients’ treatment

Apoptosis as prognostic marker

Many different anti-apoptotic modifications are found in hu-
man tumors, and resistance to apoptosis most likely is re-
quired for tumor cells to survive. This resistance could
therefore be associated with a poor prognosis for cancer pa-
tients. In order to evaluate its prognostic value, several
studies have scored the expression of a single apoptosis-
associated protein, such as p53, Bcl-2 and/or Bax, and have
correlated their expression with prognosis. As reviewed by
Brown and Wilson,115 studies on solid tumors present con-
flicting data; some show significant correlations with good
or poor prognosis, whereas others describe no significant
associations. A limitation in scoring a single protein is that
the expression of a single protein may not reflect the level
of apoptosis since apoptosis is regulated by a complex net-
work of proteins. Indeed, the expression of Bcl-2 or p53
does not always correlate with the number of apoptotic
cells.116–118 Therefore, apoptosis might be more adequately
determined by evaluating the exact number of apoptotic
cells in tumor tissues by a TUNEL assay (detects DNA frag-
mentation) or by staining with the M30 antibody (recognizes
caspase-cleaved cytokeratin-18).

We have summarized studies that evaluate the associa-
tion between apoptosis and prognosis for colorectal cancer
patients. Most of these patients are treated by surgery only,
allowing evaluations regarding the predictive value of
‘spontaneous’ apoptosis which is not influenced by (neo-)
adjuvant treatments (Table 1). Although these studies are
evaluated retrospectively, the prevalent finding in rectal
cancer patients is a positive correlation with higher sponta-
neous apoptosis favoring less local recurrence development
when treated with surgery only.119,120 Despite one study,121

all others show no effect of apoptosis on the development
of distant recurrences and survival.117–120,122 For colon can-
cer patients, local tumor control is not a major clinical is-
sue, and studies focus on survival. Whereas some studies
found a positive association between high apoptosis and
good prognosis,123,124 others show no124–127 or a negative
association.118,128,129

The observation that high levels of apoptosis in primary
rectal tumors are associated with a better local control
after surgery may reflect a capacity of local effectors, such
as cytotoxic T cells and natural killer cells, that can control
tumor cells outside the resection margin. In this case, low-
apoptotic tumors may have a less aggressive microenviron-
ment. An alternative explanation might be that low-apopto-
tic tumor cells are less sensitive to apoptotic triggers, and
thus more likely to survive and develop a local recurrence.
A review on prognostic markers in rectal carcinoma shows
that high levels of apoptosis in pre-treatment biopsies cor-
respond with more tumor regression upon pre-operative
radiochemotherapy.130 This observation supports the notion
that spontaneous apoptosis may reflect the cells’ sensitivity
to local apoptotic triggers. The fact that survival largely de-
pends on distant recurrences rather than local control can
explain the lack of consistent correlations with survival for
both rectal and colon cancer patients.

Focusing on the prognostic value of apoptosis, several
studies on rectal carcinoma show that patients with high-
apoptotic tumors have a good prognosis, and most likely will
not benefit from pre-operative radiotherapy.119,120,131 Thus,
for rectal cancer patients and likely for other cancer types as
well, apoptosis can be of clinical use as a marker to select
those patients that have a relatively high risk to develop a lo-
cal recurrence and need (neo-)adjuvant to reduce this risk.



Table 1 Prognostic value of apoptosis for (colo)rectal cancer patients

1st author Patients Treatment Outcome

Tannapfel122 32 Rectal Neoadjuvant CRT No correlation with recurrences =
Schwandner117 160 Rectal Adjuvant CRT for TNM II - III No correlation with recurrences

and survival
=

Adell119 162 Rectal Randomized for neoadjuvant RT High apoptosis less local recurrences,
not survival

+

Rodel121 44 Rectal Neoadjuvant CRT High apoptosis less recurrences +
Hilska118 124 Rectal No correlation with survival =
de Bruin120 1198 Rectal Randomized for neoadjuvant RT High apoptosis less local

recurrences, not survival
+

Langlois123 74 Colorectal High apoptosis better survival +
Sinicrope124 64 Proximal colon No correlation with survival =

82 Distal colon High apoptosis better survival +
Michael-Robinson125 100 Colorectal No correlation with survival =
Elkablawy126 53 Colorectal No correlation with survival =
Rupa128 278 Colorectal High apoptosis worse survival �
Noguchi127 80 Colorectal No correlation with survival =
Bendardaf129 49 Colorectal High apoptosis worse survival �
Hilska118 239 Colon High apoptosis worse survival �
Note: in the case of neoadjuvant chemoradiotherapy (CRT), apoptosis was determined in pre-treatment biopsies.
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Apoptosis as therapeutic target

The question is whether the inherent resistance to apoptosis
of tumor cells influences their responses to anti-cancer
therapies. It has been proposed that failure to undergo
apoptosis can result in treatment resistance. Indeed,
in vitro experiments often show that anti-apoptotic modifi-
cations in tumor cells, such as Bcl-2 overexpression, sup-
press cell death induced by radiation or chemotoxic drugs
and mice with myc-driven lymphomas with impaired apop-
tosis fail to respond to chemotoxic drugs.36,132 However,
other in vivo experiments cannot find an association be-
tween apoptosis resistance and treatment failure. For
example, the response of established HCT116 tumors is sim-
ilar for cells overexpressing Bcl-2 or not, while these cells
clearly differ in apoptosis resistance in in vitro assays.3

Hence, the effect of apoptosis resistance to the overall
treatment effect is likely to depend on the specific tumor
type. It has been suggested that resistance towards apopto-
sis might be more important for therapy resistance of hema-
topoietic malignancies rather than solid tumors of epithelial
origin.3

For solid tumors, several anti-cancer treatments have
been shown to trigger apoptosis in tumor tissues. For exam-
ple, 5-fluorouracil or radiotherapy increases the level of
apoptosis in colorectal tumors.119,133 However, the clinical
outcome of the patients appears not to be influenced by this
induced apoptosis, as radiotherapy reduces local recurrence
rates for rectal cancer patients irrespective of the level of
apoptosis after the treatment.119,120 In agreement, two re-
views describe a modest role for apoptosis in response to
radiotherapy in several other solid tumor types.3,134

Apparently, the success of treatment does not solely de-
pend on the induction of apoptosis. An explanation can be
that radiotherapy and most chemotherapeutics are not de-
signed to specifically induce apoptosis. Alternatively, tumor
cells are intrinsically resistant to apoptosis, and other types
of cell death compensate for this apoptosis block.135,136

Exploring non-apoptotic types of cell death might therefore
provide new opportunities for a more effective anti-cancer
approach.

Autophagy in cancer treatment

Markers that easily detect autophagy in vivo are not
available at present, limiting investigations regarding its
prognostic value for cancer patients. Nevertheless, experi-
mental settings and mouse tumor models have shown that
autophagy can be induced by radiation and chemotherapy
in tumor cells.69,137–140 However, seemingly conflicting data
have been published as to whether autophagy exerts a posi-
tive or negative effect on treatment response. Some data
suggest that autophagy functions as survival mechanism.
For example, inhibition of autophagy by specific drugs
enhances the radiosensitivity of malignant glioma cells in
an experimental setting.140 Inhibition of autophagy also
enhances the induction of apoptosis, increases tumor
regression and results in delayed tumor outgrowth in a
lymphoma mouse model.66 Autophagy can thus protect cells
from death. In agreement with this hypothesis, induction of
autophagy by rapamycin protects various tumor cell lines
against the induction of apoptosis.141,142 Autophagy inhibi-
tors as adjuvant treatment could thus enhance the effect
of apoptosis-inducing anti-cancer therapies for cancer
patients.

On the contrary, experiments with cells that have im-
paired apoptosis show that these cells are more sensitive
to radiation than wild-type cells via the induction of autoph-
agy.143–145 This radiosensitivity was, however, determined
using clonogenic survival assays, measuring the percentage
of cells that can form a colony after radiation. Such assays
are not only affected by cell death but also by a delay or
stop in proliferation; effects suggested to occur during
autophagy.54 Autophagy can thus be a survival mechanism,
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which reduces but preserves the cells’ clonogenic potential
for a period of time. Another possible explanation for these
contradictory findings can be that autophagy needs to reach
a certain threshold before it results in cell death. If this is
the case, induction of autophagy as adjuvant treatment
could enhance the effect of anti-cancer therapies. In line
with this idea is the observation that clinical application
of mTOR inhibitors result in a prolonged survival of patients
with metastatic renal cancer or breast cancer.146–148 Obvi-
ously, these data are not fully conclusive regarding the role
of autophagy in treatment response, since the anti-tumor
effects of inhibiting mTOR could reflect its role in cell cycle
regulation or translation as well. It is thus still unclear
whether treatment-induced autophagy functions as a cell
death mechanism or as a mechanism by which tumor cells
are able to survive.

The prognostic value of Mitotic catastrophe

There is some evidence for the hypothesis that mitotic
catastrophe influences prognosis. High expression of pro-
teins involved in entering mitosis, as Plk1 and CDC25B
phosphatase, is associated with poor prognosis for colo-
rectal cancer patients.149,150 In vitro studies show that
a constitutively active mutant of Plk1 can indeed override
growth arrest induced by DNA damage, resulting in aber-
rant mitosis.151

The association between poor prognosis and the inability
of the tumor cells to induce mitotic catastrophe-associated
death is also supported by studies that evaluate the expres-
sion of Survivin. For colorectal cancer patients, high Survi-
vin expression is indeed associated with an increased
tumor recurrence risk and shorter survival for colorectal
cancer patients.93–95,115,152 Also for multiple myeloma, high
Survivin correlates with more advanced stages.153 A review
by Brown and Gilson addresses the role of Survivin on the
outcome of surgery, and shows that increased expression
of Survivin is usually associated with poor clinical outcome
in a variety of human solid tumors. However, as described
above, the link between Survivin expression and mitotic
catastrophe is far from clear.

Mitotic catastrophe as therapeutic target

Tumor cells are frequently deficient in their cell cycle
checkpoints. It allows cells to enter mitosis without an ar-
rest that allows for DNA repair. This implies that tumor cells
can be susceptible to mitotic catastrophe induction, partic-
ularly when treated with DNA damaging agents.154,155 In-
deed, mitotic catastrophe has been pointed out as an
important form of death in solid tumors upon irradia-
tion.3,69,134,156 Experimental settings show, for example,
that twelve of fourteen solid-tumor cell lines display mitotic
catastrophe when treated with the DNA damaging drug
doxorubicin, while only two lines die through apoptosis.69

In addition, an increase in mitotic catastrophe can compen-
sate for impaired apoptosis, resulting in similar overall cell
death as for cells with functional apoptosis.69,135,136 A more
recent study confirms these in vitro data in an in vivo exper-
iment. Established tumor cells with impaired cell cycle
checkpoints show a mitotic catastrophe response that cor-
responds with enhanced tumor regression when treated
with DNA damaging drugs.73 Another finding favoring a role
for mitotic catastrophe in vivo is the observation that the
largest cell death effects induced by radiotherapy are not
at the time of treatment, but several days later when cells
re-enter the cell cycle.157 This late form of death has been
characterized by various abnormal mitotic characteristics,
and thus might be related to mitotic catastrophe.69,115

The exact molecular mechanisms of mitotic catastrophe
are largely unknown, and molecular markers have not been
defined to distinguish mitotic catastrophe from other forms
of cell death in tumors of cancer patients. Such markers are
awaited with excitement, as these allow confirmation or
rejection of the above-described hints regarding mitotic
catastrophe’s contribution to overall cell death in vivo.

Necrosis in cancer treatment

It is known from in vitro experiments that necrosis is in-
duced by anti-cancer drugs, particularly by DNA-alkylating
drugs. DNA-alkylating agents have shown to cause necrotic
cell death via activation of PARP-1. This necrosis occurs
with equal effectiveness in cells with or without functional
apoptosis.158 Interestingly, especially cells using aerobic
glycolysis are shown to be sensitive for this PARP-mediated
necrosis.158 Since many tumor cells depend on aerobic gly-
colysis, this observation suggests that tumor cells in partic-
ular might be killed through necrosis upon treatment with
alkylating agents.

In cancer patients, apoptotic cell death can be discrimi-
nated from necrotic cell death by measuring the size of DNA
fragments, or by screening the different forms of cytokera-
tin-18 (caspase-cleaved versus non-cleaved) in plasma sam-
ples.159,160 Interestingly, patients with endometrial tumors
show predominantly the non-cleaved form of cytokeratin-
18 after treatment with chemotherapy.161 In agreement
with this observation, chemotherapy induces more necrotic
than apoptotic cell death in breast cancer patients, and this
necrotic response is associated with a better survival.162 At
present, it is, however, not clear whether the presence of
non-cleaved cytokeratin-18 in serum marks necrotic cell
death specifically, or whether it measures non-apoptotic
cell death in general. Nevertheless, these in vivo data show
that current anti-cancer therapies are well capable of
inducing non-apoptotic cell deaths.
Concluding remarks

Almost all human tumors have acquired anti-apoptotic mod-
ifications. Therefore, it is tempting to conclude that an in-
tact apoptotic pathway is likely tumor suppressive and that
inhibition of apoptosis is necessary for tumor development.
In line with this assumption, researchers have speculated
that defective apoptotic pathways result in therapy resis-
tance, since many cancer therapies induce apoptosis in tu-
mor cells.

In the case of solid tumors, this inferral may not hold
very well. The large majority of colorectal tumors, for
example, show a defective p53 pathway, but radiation still
induces some apoptosis. However, a correlation between
defective apoptosis and radiotherapy resistance is not
established unambiguously. Even if the level of apoptosis
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after treatment is low, the irradiated rectal cancer patients
still have a better prognosis than non-irradiated patients. It
is therefore likely that other radiation-induced effects,
leading to death or permanent growth arrest, are also in-
volved in the overall treatment response. In the case of
radiotherapy, mitotic catastrophe-associated death is
thought to play a prominent role. However, at present mito-
tic catastrophe is difficult to discriminate from other forms
of cell death, and therefore might well be accompanied
with apoptosis. It will be interesting to see future research
in this area especially when reliable markers for the differ-
ent forms of cell death become available.

The observation that apoptosis may not be the most
dominant form of cell death for solid tumors might be due
to the fact that conventional therapies, such as radiother-
apy, are not specifically designed to induce apoptosis. These
therapies may result in apoptosis as a secondary effect, due
to induced cellular damage. Enhancement of the apoptotic
potential of such therapies may thus increase the overall tu-
mor cell death.

Currently, recombinant soluble TRAIL or agonistic TRAIL
antibodies are being evaluated in clinical trails, and seem
promising when combined with radiation.163 In addition,
the recently discovered small-molecule inhibitor of anti-
apoptotic proteins such as the Bcl-2 family proteins (ABT-
737) or IAPs sensitizes many tumor cells to cytotoxic agents
in vitro.119,164 It will be interesting to see whether the same
observation can be made in vivo when these drugs make
their way into clinical trials. Since apoptosis is an effective
and tidy way to eliminate tumor cells, such a direct induc-
tion of apoptosis may have great therapeutic potential.
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